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SUMMARY 
Flux splitting is applied to the convective part of the steady Navier-Stokes equations for incompressible flow. 
Partial upwind differences are introduced in the split first-order part, while central differences are used in the 
second-order part. The discrete set of equations obtained is positive, so that it can be solved by collective 
variants of relaxation methods. The partial upwinding is optimized in the same way as for a scalar 
convection-diffusion equation, but involving several Peclet numbers. It is shown that with the optimum 
partial upwinding accurate results can be obtained. A full multigrid method in W-cycle form, using red-black 
successive under-relaxation, injection and bilinear interpolation, is described. The efficiency of this method is 
demonstrated. 
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INTRODUCTION 

The flux-vector-splitting method was introduced by Steger and Warming' to solve unsteady Euler 
equations. Further, it was shown by Jespersen' that the flux-vector-splitting method can also be 
used on the steady Euler equations to generate discrete equations which form a positive set so that 
a solution by relaxation methods, in multigrid form, is possible. 

The concept of flux-vector splitting was extended to steady Navier-Stokes equations for 
incompressible flow by the author3 and an optimized partial flux-splitting formulation was 
de~e loped .~  The set of equations obtained is positive and can be solved by relaxation methods. 

In this paper, after a short review of the principles, a multigrid version of the method is 
presented and its efficiency is demonstrated. 

FLUX-VECTOR SPLITTING FOR STEADY NAVIER-STOKES EQUATIONS 

The steady Navier-Stokes equations for an incompressible fluid are 

au au a p  azu 
ax ay ax (ax2 ay2) 

u - + v - + - = v  - -+-,  
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where u and c are the Cartesian components of velocity, c is a reference velocity introduced to 
homogenize the eigenvalues of the system matrices, v is kinematic viscosity and p is pressure 
divided by density. 

In system form the set of equations (IH3) becomes 

or symbolically 

Thc matrices A and B in (5) have both positive and negative eigenvalues, while D has non-negative 
eigenvalues. Furthermore, A and B have a complete set of eigenvectors. As a consequence, the set 
of equations (5) forms a convective-diffusive sct. 

Obviously it is always possible to split the matrices A and B into non-negative and non-positive 
parts, so that a split form of the set (5) becomes 

where A' and B' have non-negative eigenvalues while A -  and B -  have non-positive eigenvalues. 
The splitting of thc matrices A and B is not unique. However, since the matrices have a complete 

sct of eigcnvcctors, an obvious way of splitting is a splitting based on the eigenvalue matrices, as 
proposed by Steger and Warming.' 

By denoting the eigenvalue matrices of A and B by AA and A, and the left eigenvector matrices 
by X, and X,, obviously 

A = X i '  A,X,, B = X i ' A , X ,  

The eigenvalue matrices can be split into 

A,* = A: +-A,, AB=AR+ +A;, 

where A: and A$ arc diagonal matrices constructed by collecting the positive and negative entries 
from A, and A,,. 

Split matrices are then obtained by 

A'  = X i ' A : X , ,  B' = X , ' A $ X , .  

For the Navier Stokes equations (9, the eigcnvalues of the system matrices A and B are 

. u + J(u' + 4 2 )  . u - J(u' + 4 2 )  

v - J(c' + 4 2 )  

A,, = -_ - 

2 
.~ _ _  - 

2 
;.,,, = u. A, ,  = 

;.,, = c, ).2,, = -- .- .~ . 
, , ,.3R = ~ 

. L' + J("2 + 4c2) 
2 2 

Obviously i2,  and R,, are always positive, i3* and 
sign with u and u. 

are always negative, while ;.,, and I.,, change 
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A: = diag(u+, A,,, 0), 
12; = diag (u+ ,  AZB, 0), 

A; = diag (u -, 0, A3, ), 
A; = diag (u-,  0, A,,), 

with 

u +  = max(u, O), u -  = min(u, O), u +  = max(v, O), u-  = min(v, 0). 

According to the procedure of Steger and Warming, the split matrices become 

zi+ 0 a1 
A + = X , ' A ; X , =  [ a:c2 :], A -  = X , ' h , X , =  

v +  0 0 
B - = x - ~ A - x  - B+ = X , ' A i X ,  = [ 0 0' 1, B B 6 -  

0 B l C '  

where 

ti+ = a , u + a ,  6 -  = a2u-ua, G +  = P 1 v + b ,  
with 

= 0*5(1 +a), = 05(1 -a), f l 1  = 05(1 +B), 
a = c2/J(u2 + 4c2), b = c2/,/(u2 + 4c2), a = u/J(u2 + 4c2), p = v/,/(02 + 4c2). 

On a rectangular grid, using upwind differences in the first-order part (i.e. backward differences for 
terms with a plus sign and forward differences for terms with a minus sign) and central differences 
in the second-order part, the discretization of (6) is 

Cti ,  j = A+(l/Ax,)ti-,,j+(-A-)(l/Axe)ti+l,j 
+ B +  (l/Ays) ti, j -  1 + (-B-)(l/AYn 1 ti, j +  1 

+D(1/Ax/Axw)ti-1, j+D(l /Ax/Axc)Si+l ,  j 
+D(1/AY/AYs)ti, j- 1 + D(l/AY/AYn)ti, j+ 1 7  (7) 

where C is the sum of the matrix coefficients on the right-hand side and where 

Ax w = x .  r , j  . - X .  t - l , j ?  

Ays = y. 1 , J  . - y .  h - 1 '  . 

AX,.= x i + l , j - X i , j ,  

AYn = Yi, j +  1 - Y i ,  j ,  

AX = O-5(Axw +Axe), 

By = O.5(Ays + Ay,). 

It can be verified that for the Steger and Warming splitting the eigenvalues of the C-matrix are 
always p~s i t i ve .~  As a consequence, the set of equations (7) is a vector-positive set. It can be solved 
by a vector variant of any scalar relaxation scheme. 

PARTIAL FLUX-SPLITTING FORMULATION 

Using full upwind differences, the set of equations (7) is positive, even without the diffusive part. 
Since the diffusive part contributes to the positivity for the momentum equations, a partial upwind 
formulation is possible for these equations, retaining the positivity. 
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For example, the momentum-x equation can be discretized as 

where 

6; u = (ui. j - ~i - I .   AX,, (j;U = ( u i ,  - ui. j ) / A ~ ~ , ,  
ii, u = (Axe 6.: u -t- A.yW 6; u) /~A.x ,  

6,' u = (u;, j - u;. j- l)/Ay,, u = (ui. j + 1 - ui. j )/AY,, 
S, u = (AJ" h,,: u + Ayb by- ~)/2Ay, 
6.; u = ( d l  u - 3, u)!Ax, 6,; u = (6: u - 6, u)/Ap. 

A similar discretization can be used on the momentum-yequation, involving fly, and fly,. The mass 
equation is to be discretized in a full upwind way. 

The optimum valucs for the partial upwind coefficients Ox,, O,,, O,, and fly, can be determined 
by expressing that the linearized form of the discrete equations --i.e. coeficients like li', li-, L", 
I , - .  . . . considered as being constant- -is of the form 

tux,\ ecF:,.. 

In this way the optimum valuc of Ox, is found to be given by 

where 

- 1  1 -_ - u.*x* , v  el l ' \xc,  P 

(T = .. _. .- - 6, = - - - 3  e Axw Axc ' 

Similar expressions are found for Ox,, fly, and O V v .  
As is common practice for scalar equations, the expressions for the optimum partial upwind 

coefficients can be replaced by their expansions for small values of velocity, with a maximum of I .  
Expansion of (8) lcads to 

(9) (I1., = min .( (Pe,,/6), 11, 

Pe,, = (12 + A.yW -- li Axe ),'\,. 

where the Peclet number is 

(10) 

The results for the other coefficients arc 

= min (Pe,,/6), 1 ), Pe,, = ( L' + Ay, - t: - Ay, )/v, 

Ov.r = min {(Pey.r/6), 11, Pe,, = (u+ A.xW - 1 4 -   AX,.)!^. ( 1  1 )  
O y y  = min { ( Pep,$), 1 ). Yey., = ( 2  ' Ayq - t Ay,,)/i<. 

NUMERICAL EXAMPLE 

Figure I shows a well known G A M M  backward-facing step problem,' discretized with a coarse 
grid with 42 elements. This grid is the coarsest of a series of four, the fincst grid having 2688 
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Figure 1. Backward-being step problem discretized with a coarse grid 

elements. In the construction of finer grids, the same stretching law is applied as used in the coarse 
grid. 

In earlier versions3. boundary equations were derived from the field equations by combining 
them in order to eliminate outgoing derivatives. These so-called consistent boundary equations 
were supplemented with obvious essential boundary conditions. 

In this paper the boundary equations are constructed in the more classical way by taking 
inward discretizations of the normal momentum equation. I t  was found that the solutions 
obtained by both methods are nearly identical. 

At inlet 

The boundary conditions and boundary equations are as follows. 

( I )  u = uo(y) in which u,(y) is a parabolic profile with a mean velocity c 
( 2 )  v = 0 
(3) p from the momentum-x equation in which an assumption of fully developed flow is used: 

a; p = I’ 8; u. 

At outlet 

(1) P = 0 
( 2 )  u = 0 
( 3 )  u from an assumption of fully developed flow: 

s; u = 0. 

At solid boundaries 

( I )  u = 0 
( 2 )  u = 0 
( 3 )  p from an inward discretization of the normal momentum equation. 

At  horizontal parts of the boundary this is 

(5; p = V6,2* v.  (12 )  

In ( 1 2 )  the inward discretization of the second derivative is obtained by Taylor expansion, using 
SJ? 1: = 0 from the mass equation. For example, for a horizontal bottom boundary this results in 

(13) Pi .  jIAyn = Pi. j +  1 I A Y n  -2Vvi.  j +  L IAJ~,Z. 
At  the vertical part of the boundary the p-equation is 

or 
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A t  the corner points in the bottom part of the boundary the mean value from equations (13) and 
(14) is taken. 

Figure 2 shows the solution obtained with a successive under-relaxation method (relaxation 
factor 0.95) in red-black ordering for 

Re = Uma,h/v = 150, 

where I/,,, is the maximum value of the velocity at the inlet section and h is the step height. The 
streamlines shown in Figure 2 were obtained by integration of the calculated velocity profiles. The 
reattachment length to step height ratio is about 6.  This result is in accordance with the 
experimental value.5 

Figure 3 shows the isobars, normalized according to 

where p ,  is the corner pressure. 

MULTIGRID FORMULATION 

A description of the basics of the multigrid method is not given here. The reader not familiar with 
the terminology used in this section is referred to the overview of Stiiben and Trottenberg6 

All equations are normalized by bringing the coefficient of u, c' and p in the central node, for the 
momentum-x, momentum-p and pressure (mass) equation respectively, to the value 1. As a result, 
field equations and boundary equations take a similar form. This allows the use of full weighting as 
restriction operator for defects of boundary equations and field equations. 

Successive under-relaxation in red black form was chosen as relaxation algorithm. For a 
systcm of first-order equations the maximum relaxation factor for stability is 1 (not 2). Maximum 
convergence rate for a single-grid calculation was found to be obtained for a relaxation factor of 
0.95. Although it is well known that red-black relaxation does not have optimum smoothing 
properties, this algorithm was chosen for its ease in vectorizing the code. 

Y=.5 

6 h  / 
$m/"=:0187 

Figere 2. Streamline pattern for the backward-facing step problem, obtained at the linest grid 

Figure 3. Pressure level pattern for the backward-king step problem 
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A full approximation scheme was used. For the restriction operator, experiments were done 
with full weighting on both function values and defects, with injection for function values and full 
weighting for defects, and with injection for both. In the full weighting versions, experiments were 
done with full weighting at the boundaries and with weighting restricted to boundary points. 

As a result of the normalization process, the sum of the weight factors in the full weighting for 
defects is 2. As is well known, with red-black ordering, the weight factor using injection for defects 
is not 2 but 1, i.e. half-injection is to be used. Bilinear interpolation was used as prolongation 
operator. 

The classical cycle configurations were tried: V-cycle, F-cycle and W-cycle. It was found that the 
W-cycle performs best. Also the full multigrid method, i.e. using a nested iteration as starting cycle, 
was used. The cycle geometry is shown in Figure 4. Each dot represents a relaxation operation. 
The nested iteration also has a W-form. 

The best efficiency of the multigrid cycle was found to be reached for the same relaxation factor 
as for single-grid calculations: cu = 0.95. 

It was found that the performance is insensitive to the choice of the restriction operator. Using 
full weighting for defects is slightly more efficient than using injection, in terms of the required 
number of cycles. However, since injection requires less residue evaluations, in terms of work units 
the performance is about the same. The performance is also not sensitive to the precise weighting 
formula: algebraic weighting (i.e. weighting factors +,d, 4) or geometric weighting (i.e. weighting 
factors taking into account the distances between nodes). Therefore, owing to its simplicity, 
injection for both functions and defects was retained for further use. 

Figure 5 shows the convergence history for a single-grid calculation and a multigrid calculation. 
The initial condition is a flow with v = 0 and p = 0 everywhere and with u equal to the inlet profile 
in the upper part of the flow field and u = 0 in the lower part of the flow field. In the evaluation of 
the work of a cycle, on the finest grid, a relaxation and a residue calculation with the associated 
grid transfer are counted as one work unit. 

The work done in each node of the cycle is indicated in Figure 4. In going down in the cycle, the 
3 represents a residue evaluation in the coarse grid points of the next finer grid and its injection, a 
residue evaluation on the coarse grid to form the right-hand side in the coarse grid equations, and 
one relaxation. The work spent in a cycle is 4125 work units. The work spent in the nested 
iteration is 2.141 work units. 

CONCLUSIONS 

It was shown that the flux-vector-splitting technique can be applied to steady Navier-Stokes 
equations in incompressible flow, leading to discrete equations that can be solved by vector 

_ _ _  h 

21, 

--- 4 h  

8 h  

--- 

--- 
Nested iterotion 

Figure 4. Geometry of the multigrid cycle 
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Figure 5. Convergcnce history for single-grid and midtigrid red-black relaxation 

variants of relaxation schemes. As a result of the partial upwinding, an  accurate solution is 
obtained. By the use of the multigrid formulation a very efficient solution tcchnique is realized. 
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